和大师的们的思想碰撞 登录 注册
加入支持让我们有继续维护的动力!会员畅享查看所有预告 立即购买

意大利米兰理工大学Hamid Reza Karimi教授学术讲座


来源:
学校官网

收录时间:
2025-11-12 11:50:00

时间:
2025-11-15 10:00:00

地点:
科学城校区科学中心2号楼405会议室

报告人:
Prof. Hamid Reza Karimi

学校:
-/-

关键词:
deep learning, fault diagnosis, rotary machinery, CNNs, RNNs, transformers, time-series signals, vibration, sound, feature learning, transfer learning, data augmentation, self-supervised learning, attention mechanisms, multimodal data fusion, explainable AI, domain adaptation

简介:
Deep learning has revolutionized fault diagnosis in rotary machinery, enabling high-accuracy detection from raw sensor data. Techniques like CNNs, RNNs, and transformers extract meaningful patterns from time-series signals such as vibration and sound. These models automate feature learning and outperform traditional diagnostic methods. However, real-world deployment faces challenges including limited labeled data, poor model interpretability, and generalization issues across different machines. Data scarcity is especially critical for rare or early-stage faults. To address these, strategies like transfer learning, data augmentation, self-supervised learning, and attention mechanisms are explored. Multimodal data fusion further enhances diagnostic reliability. Future directions involve integrating explainable AI, and domain adaptation to build robust, interpretable systems. These innovations are essential for scalable, real-time machinery health monitoring in industrial environments.

-/- 76
报告介绍:
Deep learning has revolutionized fault diagnosis in rotary machinery, enabling high-accuracy detection from raw sensor data. Techniques like CNNs, RNNs, and transformers extract meaningful patterns from time-series signals such as vibration and sound. These models automate feature learning and outperform traditional diagnostic methods. However, real-world deployment faces challenges including limited labeled data, poor model interpretability, and generalization issues across different machines. Data scarcity is especially critical for rare or early-stage faults. To address these, strategies like transfer learning, data augmentation, self-supervised learning, and attention mechanisms are explored. Multimodal data fusion further enhances diagnostic reliability. Future directions involve integrating explainable AI, and domain adaptation to build robust, interpretable systems. These innovations are essential for scalable, real-time machinery health monitoring in industrial environments.
报告人介绍:
Hamid Reza Karimi,意大利米兰理工大学机械工程系教授。Hamid教授的原创研究和开发成果涵盖自动化/控制系统和智能系统等广泛主题,并应用于车辆、机器人和机电一体化等复杂系统。Hamid教授是欧洲科学院院士、欧洲科学与艺术学院院士、挪威阿格德科学与文学院院士、国家人工智能学院(NAAI)院士、玻利维亚国家科学院荣誉院士、国际声学与振动研究所(IIAV)杰出院士、国际状态监测学会(ISCM)会员、亚太人工智能协会(AAIA)会员、同时也是IFAC机电系统技术委员会成员、IFAC鲁棒控制技术委员会成员、IFAC汽车控制技术委员会成员、国际声学与振动学会(IIAV)董事会成员和国际状态监测学会(ISCM)管理委员会成员。Hamid教授是2025年NAAI杰出人工智能学者奖、2021年BINDT CM创新奖、科学网高被引工程研究员、August-Wilhelm-Scheer客座教授奖、JSPS(日本科学促进会)研究奖和Alexander-von-Humboldt-Stiftung研究奖的获得者。Hamid教授曾担任施普林格、CRC Press和爱思唯尔的主编和丛书编辑,还参加了控制系统、机器人和机电一体化领域的几个国际会议,担任总主席、主题/全体发言人、杰出发言人或项目主席。Hamid教授曾担任“Lombardia è ricerca”国际大奖副主席,也是将在意大利米兰举行的2026年世界状态监测大会(WCCM2026)担任大会主席。Hamid教授还是英国哈德斯菲尔德大学计算机与工程学院的荣誉客座教授。

购买下会员支持下吧...用爱发电已经很久了 立即购买

更多讲座报告

邮件提醒 短信提醒

本文节选自学校官网,仅提供聚合查看,所有立场、观点等不代表本站立场。